Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1348405, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38389533

RESUMO

Several animal models have been used to assist the development of vaccines and therapeutics since the COVID-19 outbreak. Due to the lack of binding affinity of mouse angiotensin-converting enzyme II (ACE2) to the S protein of severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), increasing the susceptibility of mice to SARS-CoV-2 infection was considered in several ways. Here, we generated a COVID-19 mouse model expressing human ACE2 (hACE2) under the control of the CAG promoter. Overexpression of hACE2 did not pose a significant effect on weight growth. After SARS-CoV-2 inoculation, mice showed obvious viral replication and production of inflammation within 7 days, with a gradual decrease in body weight until death. Virological testing found that the virus can replicate in the respiratory system, small intestine, and brain. Additionally, this mouse model was applied to compare two antibody drug candidates, the anti-RBD antibody (MW06) and the mouse CD24-conjugated anti-RBD antibody (mCD24-MW06). Differences in antiviral effects between these two antibodies can be demonstrated in this mouse model when a challenge dose that invalidates the anti-RBD antibody treatment was used. This study provided a new mouse model for studying SARS-CoV-2 pathogenesis and evaluating potential interventions.

2.
Front Plant Sci ; 14: 1128227, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077644

RESUMO

Leaf traits are important indicators of plant life history and may vary according to plant functional type (PFT) and environmental conditions. In this study, we sampled woody plants from three PFTs (e.g., needle-leaved evergreens, NE; broad-leaved evergreens, BE; broad-leaved deciduous, BD) on the eastern Qinghai-Tibetan Plateau, and 110 species were collected across 50 sites. Here, the divergence and correlations of leaf traits in three PFTs and relationships between leaf traits and environment were studied. The results showed significant differences in leaf traits among three PFTs, with NE plants showed higher values than BE plants and BD plants for leaf thickness (LT), leaf dry matter content (LDMC), leaf dry mass per area (LMA), carbon: nitrogen ratio (C/N), and nitrogen content per unit area (Narea), except for nitrogen content per unit mass (Nmass). Although the correlations between leaf traits were similar across three PFTs, NE plants differed from BE plants and BD plants in the relationship between C/N and Narea. Compared with the mean annual precipitation (MAP), the mean annual temperature (MAT) was the main environmental factor that caused the difference in leaf traits among three PFTs. NE plants had a more conservative approach to survival compared to BE plants and BD plants. This study shed light on the regional-scale variation in leaf traits and the relationships among leaf traits, PFT, and environment. These findings have important implications for the development of regional-scale dynamic vegetation models and for understanding how plants respond and adapt to environmental change.

3.
Front Microbiol ; 14: 974316, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36744094

RESUMO

Soil microbial community composition and extracellular enzyme activity are two main drivers of biogeochemical cycling. Knowledge about their elevational patterns is of great importance for predicting ecosystem functioning in response to climate change. Nevertheless, there is no consensus on how soil microbial community composition and extracellular enzyme activity vary with elevation, and little is known about their elevational variations on the eastern Qinghai-Tibetan Plateau, a region sensitive to global change. We therefore investigated the soil microbial community composition using phospholipid fatty acids (PLFAs) analysis, and enzyme activities at 2,820 m (coniferous and broadleaved mixed forest), 3,160 m (dark coniferous forest), 3,420 m (alpine dwarf forest), and 4,280 m (alpine shrubland) above sea level. Our results showed that soil microbial community composition and extracellular enzyme activities changed significantly along the elevational gradient. Biomass of total microbes, bacteria, and arbuscular mycorrhizal fungi at the highest elevation were the significantly lowest among the four elevations. In contrast, extracellular enzyme activities involved in carbon (C)-, nitrogen (N)-, and phosphorus (P)- acquiring exhibited the maximum values at the highest elevation. Total nutrients and available nutrients, especially P availability jointly explained the elevational pattern of soil microbial community, while the elevational variation of extracellular enzyme activities was dependent on total nutrients. Microbial metabolism was mainly C- and P-limited with an increasing C limitation but a decreasing P limitation along the elevational gradient, which was related significantly to mean annual temperature and total P. These results indicated a vital role of soil P in driving the elevational patterns of soil microbial community and metabolism. Overall, the study highlighted the contrasting responses of soil microbial biomass and extracellular enzyme activities to elevation, possibly suggesting the differences in adaption strategy between population growth and resource acquisition responding to elevation. The results provide essential information for understanding and predicting the response of belowground community and function to climate change on the eastern Qinghai-Tibetan Plateau.

4.
Sci Total Environ ; 871: 162036, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36746282

RESUMO

Elucidating the mechanisms that control the leaf stable carbon isotope values (δ13Cleaf) is the prerequisite for the widespread application of δ13Cleaf. However, the competing effects of physiological and environmental factors on δ13Cleaf variations of the different plant functional types (PFTs) have not been disentangled, and the corresponding mechanisms remain unclear. Based on large-scale δ13Cleaf measurements on the eastern Qinghai-Tibetan Plateau, the relative contributions and regulatory pathways of leaf functional traits (LFTs) and climatic factors to δ13Cleaf variations of the different PFTs were investigated. We found that δ13Cleaf of the different PFTs was correlated with annual mean precipitation negatively, but not a simple linear relationship with annual mean temperature and varied by PFTs. Leaf nitrogen content per unit area and leaf mass per area (correlated with δ13Cleaf positively) had more substantial effects on the δ13Cleaf variations of the different PFTs than other LFTs. The relative contributions of LFTs to the δ13Cleaf variations were greater than that of climatic factors, and the direct and indirect effects of climatic factors on δ13Cleaf variations varied by PFTs. Our findings provide new insights into understanding key drivers of δ13Cleaf variations at the PFT level on a regional scale.


Assuntos
Carbono , Clima , Isótopos de Carbono/análise , Carbono/metabolismo , Tibet , Plantas/metabolismo , Folhas de Planta/química
5.
PeerJ ; 10: e14028, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36124133

RESUMO

Mycorrhizal fungi can form symbiotic associations with tree species, which not only play an important role in plant survival and growth, but also in soil carbon (C) and nitrogen (N) cycling. However, the understanding of differences in soil C and N cycling patterns among forests with different mycorrhizal types is still incomplete. In order to determine the similarities and differences of soil C and N cycling patterns in different mycorrhizal forest types, three primary forests dominated by ectomycorrhizal (EcM), arbuscular mycorrhizal (AM) and ericoid mycorrhizal (ErM) trees respectively were studied on the eastern Qinghai-Tibetan Plateau. Indicators associated with soil C and N cycling, including leaf litter quality, soil C and N contents, soil C and N fluxes, and soil microbial biomass C and N contents were measured in each mycorrhizal type forest. The results showed that leaf litter quality was significantly lower with high C:N ratio and lignin: N ratio in ErM forest than that in AM and EcM forests. Soil CO2 flux (508.25 ± 65.51 mg m-2 h-1) in AM forest was significantly higher than that in EcM forest (387.18 ± 56.19 mg m-2 h-1) and ErM forest (177.87 ± 58.40 mg m-2 h-1). Furthermore, soil inorganic N content was higher in the AM forest than that in EcM and ErM forests. Soil net N mineralization rate (-0.02 ± 0.03 mg kg-1 d-1) was lower in ErM forest than that in EcM and AM forests. We speculated that AM and EcM forests were relatively characterized by rapid soil C cycling comparing to ErM forest. The soil N cycling in EcM and ErM forests were lower, implying they were 'organic' N nutrition patterns, and the pattern in ErM forest was more obvious.


Assuntos
Micorrizas , Carbono , Tibet , Florestas , Árvores/microbiologia , Nitrogênio , Solo
6.
J Fungi (Basel) ; 8(8)2022 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-36012795

RESUMO

Soil fungi play an integral and essential role in maintaining soil ecosystem functions. The understanding of altitude variations and their drivers of soil fungal community composition and diversity remains relatively unclear. Mountains provide an open, natural platform for studying how the soil fungal community responds to climatic variability at a short altitude distance. Using the Illumina MiSeq high-throughput sequencing technique, we examined soil fungal community composition and diversity among seven vegetation types (dry valley shrub, valley-mountain ecotone broadleaved mixed forest, subalpine broadleaved mixed forest, subalpine coniferous-broadleaved mixed forest, subalpine coniferous forest, alpine shrub meadow, alpine meadow) along a 2582 m altitude gradient in the alpine-gorge region on the eastern Qinghai-Tibetan Plateau. Ascomycota (47.72%), Basidiomycota (36.58%), and Mortierellomycota (12.14%) were the top three soil fungal dominant phyla in all samples. Soil fungal community composition differed significantly among the seven vegetation types along altitude gradients. The α-diversity of soil total fungi and symbiotic fungi had a distinct hollow pattern, while saprophytic fungi and pathogenic fungi showed no obvious pattern along altitude gradients. The ß-diversity of soil total fungi, symbiotic fungi, saprophytic fungi, and pathogenic fungi was derived mainly from species turnover processes and exhibited a significant altitude distance-decay pattern. Soil properties explained 31.27-34.91% of variation in soil fungal (total and trophic modes) community composition along altitude gradients, and the effects of soil nutrients on fungal community composition varied by trophic modes. Soil pH was the main factor affecting α-diversity of soil fungi along altitude gradients. The ß-diversity and turnover components of soil total fungi and saprophytic fungi were affected by soil properties and geographic distance, while those of symbiotic fungi and pathogenic fungi were affected only by soil properties. This study deepens our knowledge regarding altitude variations and their drivers of soil fungal community composition and diversity, and confirms that the effects of soil properties on soil fungal community composition and diversity vary by trophic modes along altitude gradients in the alpine-gorge region.

7.
Front Cell Infect Microbiol ; 12: 927674, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35846760

RESUMO

Viral subunit vaccines often suffer low efficacy. We recently showed that when taken out of the context of whole virus particles, recombinant subunit vaccines contain artificially exposed surface regions that are non-neutralizing and reduce their efficacy, and thus these regions need to be re-buried in vaccine design. Here we used the envelope protein domain III (EDIII) of Japanese encephalitis virus (JEV), a subunit vaccine candidate, to further validate this important concept for subunit vaccine designs. We constructed monomeric EDIII, dimeric EDIII via a linear space, dimeric EDIII via an Fc tag, and trimeric EDIII via a foldon tag. Compared to monomeric EDIII or linearly linked dimeric EDIII, tightly packed EDIII oligomers via the Fc or foldon tag induce higher neutralizing antibody titers in mice and also protect mice more effectively from lethal JEV challenge. Structural analyses demonstrate that part of the artificially exposed surface areas on recombinant EDIII becomes re-buried in Fc or foldon-mediated oligomers. This study further establishes the artificially exposed surfaces as an intrinsic limitation of subunit vaccines, and suggests that re-burying these surfaces through tightly packed oligomerization is a convenient and effective approach to overcome this limitation.


Assuntos
Vírus da Encefalite Japonesa (Espécie) , Vacinas Virais , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Camundongos , Camundongos Endogâmicos BALB C , Eficácia de Vacinas , Vacinas de Subunidades Antigênicas , Vacinas Sintéticas/genética , Proteínas do Envelope Viral
8.
Front Plant Sci ; 13: 1069730, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36684739

RESUMO

Interactions between soil fungi and soil environmental factors regulate soil nitrogen (N) mineralization rates on the eastern Qinghai-Tibetan Plateau. Some studies have also illuminated differences in soil N mineralization rate based on different mycorrhizal forests, but the associated effect of soil fungal functional guilds and soil environmental factors underlying this process are not well-understood. Three primary forests respectively dominated by Abies fargesii var. faxoniana (ectomycorrhizal, EcM), Cupressus chengiana (arbuscular mycorrhizal, AM) and Rhododendron phaeochrysum (ericoid mycorrhizal, ErM) trees were selected in this area. Meanwhile, soil net N mineralization rate, soil fungal composition and soil enzyme activity among these three mycorrhizal forests were studied. Our results showed that there were significant differences in the seasonal variation of soil net N mineralization rates among three mycorrhizal forests. Soil net N mineralization rate in the AM forest was faster. EcM fungi and saprotroph are the main functional guilds in these three mycorrhizal forests. Meanwhile, the relative abundances of soil fungal functional guilds, soil temperature and soil peroxidase activity could explain 85.0% in the difference of soil net ammonification rate among three mycorrhizal forests. In addition, soil temperature, soil water-filled pore space and soil ammonium content play a central role in controlling the differing soil net nitrification rate among three mycorrhizal forests. Our results suggest differences in soil net mineralization among different mycorrhizal forest types are driven mainly by soil net ammonification. Soil fungal functional guilds and temperature regulate the rate of soil net ammonification by modulating soil peroxidase activity.

9.
Tree Physiol ; 41(1): 76-88, 2021 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-32785643

RESUMO

Elevational variations in the growing environment and sex differences in individuals drive the diversification of photosynthetic capacity of plants. However, photosynthetic response of dioecious plants to elevation gradients and the mechanisms that cause these responses are poorly understood. We measured foliar gas exchange, chlorophyll fluorescence and nitrogen allocations of male and female Seabuckthorn (Hippophae rhamnoides L.) at the elevation of 1900-3700 m above sea level (a.s.l.) on the eastern Qinghai-Tibetan Plateau, China. Male and female plants showed increased leaf photosynthetic capacity at higher elevation generally with no sex-specific difference. Photosynthetic photon flux density-saturated photosynthesis (Asat) was limited mostly by diffusional components (77 ± 1%), whereas biochemical components contributed minor limitations (22 ± 1%). Mesophyll conductance (gm) played an essential role in Asat variation, accounting for 40 ± 2% of the total photosynthetic limitations and had a significant positive correlation with Asat. Leaf nitrogen allocations to Rubisco (PR) and bioenergetics (PB) in the photosynthetic apparatus were major drivers for variations in photosynthetic nitrogen-use efficiency. The increase of these resource uptake capacities enables H. rhamnoides to maintain a high level of carbon assimilation and function efficiently to cope with the harsh conditions and shorter growing season at higher elevation.


Assuntos
Hippophae , China , Feminino , Hippophae/metabolismo , Masculino , Nitrogênio , Fotossíntese , Folhas de Planta/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Tibet
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...